
QATra Irrigation System

Progress Report

Texas A&M University at Qatar

ECEN 404: Electrical Design Lab II

Group Members:

Maryam Al-Emadi

Roqayya AlYousef

Fatima Al-Janahi

Noof Al-Sayed

Mentor: Dr. Hazem Nounou

Course instructor: Dr. Ali Ghrayeb

Date: 30 March 2020

Texas A&M at Qatar University, March 2020

“An aggie doesn’t lie, cheat or steal, or tolerate those who do.”

TABLE OF CONTENTS

Page

ABSTRACT ...1

VISUAL PROTOTYPING AND PROGRAM CODE .. 2-4

FUNCTIONAL PROTOTYPING, TESTING, TROUBLESHOOTING, AND

EXPERIEMNTAL RESULTS... 4-11

OUR PROGRESS RELATIVE TO THE TIMELINE .. 11-12

CONCLUSION .. 12-13

REFERENCES ..14

APPENDIX .. 15-24

1

Abstract

Qatar has limited natural water resources, as it has no rivers or lakes. In addition, rain is very rare

in Qatar with an annual average of 80 mm of rain water [1]. Groundwater in Qatar supplies the

country with 62 million m³ of water per year, but it does not cover the water needs of the country.

Therefore, desalination is being used for domestic usage and treating used water is mainly being

used for agriculture. Seawater desalination process is costly and uses natural gas as fuel (a non-

renewable energy source), which increases the emission of carbon dioxide in Qatar and accelerates

global warming [2]. Cultivation can reduce the impact of global warming, and managing the

amount of water being used for cultivation can preserve our natural resources. Hence, QATra

irrigation system was designed. QATra is an advanced irrigation system that is able to reduce water

consumption by checking the soil moisture and controlling the amount of water dispensed. A

mobile application, where the user can view the daily water content of the soil and get notified

when the plants are watered, is used in our system. The user is informed in case of a fault in the

system and can control the irrigation system using the application. The project aims to address

environmental issues, cut labor costs, encourage smart innovations and boost cultivation.

In this paper, we will first discuss the visual prototype of the mobile application and the program

code of the different microcontrollers. Then, we will discuss the functional prototyping, testing,

troubleshooting and experimental results of various parts of the system. Last, we will discuss our

progress relative to the timeline we proposed at the beginning of the project and provide

verification, future recommendations, improvements and optimizations for the system.

2

Visual Prototyping and Program Code

Our system consists of various components that are linked together. To develop a better

understanding of our system and illustrate how each component should work, program flows and

diagrams were created for our three main components.

• Mobile Application

The IOS mobile application is one of the main components in our project. The purpose of the

mobile application is to give the user the ability to control the irrigation system, monitor the

moisture levels, and get informed in case of potential fault in the system. While building the mobile

application, some features were taken into consideration such as the ease and friendliness of the

mobile application to assist our audience adaptation to the new technology. Figure 1 shows the

suggested diagram of our mobile application.

Figure 1: Diagram of the IOS mobile application.

• End Node

The main function of the end node microcontroller is to take measurements of the soil moisture

level and transmit it to the main microcontroller. Figure 2 shows the program code flowchart for

the end node. The end node consists of a microcontroller that is connected to the soil moisture

sensor and to a transceiver. As shown in the figure, the grove soil moisture sensor takes the

readings of the water content in the soil and then it converts the data from integers to characters.

This step is important because the NRF24L01 transceiver only operates by transmitting characters

from one chip to another. Once the conversion is done, the sensor reading gets transmitted to the

main microcontroller using the NRF24L01 transceiver.

3

Figure 2: Flowchart of program code of end node.

• Main Microcontroller

The main microcontroller is the main link between the mobile application, the water

pump/sprinklers and the end node. Figure 3 shows the program code flowchart for the main

microcontroller with only one end node for simplicity. As shown in Figure 3, the user can input

through the mobile application the type of plant for each end zone. The main microcontroller then

receives the soil moisture level data from the end node through the transceiver. Next, it checks if

there is a potential fault in the system and if there is, it notifies the user through the mobile

application that there is a potential fault in the system. If there is no fault, it checks if the system

is controlled automatically or manually by the user. If it is controlled manually, then it’ll be

controlled by the user through the mobile application. If it is controlled automatically, then the

system will run by itself. This is done by first converting back the moisture level data from

character to integer. Then the code will check if the soil moisture level is below a certain threshold

and if this condition is met, the main microcontroller will instruct to turn the water pump on. This

process will continue through a loop until the condition is no longer valid.

4

Figure 3: Flowchart of program code of main microcontroller.

Functional Prototyping, Testing, Troubleshooting, and Experimental Results

• Testing and Experimental Results

After we gained understanding on how each component should work; the system was

implemented, the codes were written, and the mobile application was built. Meanwhile, each part

of the system was tested to ensure a smooth operation of the whole system.

• End Node

As mentioned earlier, the end node is responsible for taking soil moisture measurements and

sending them to the main microcontroller. Thus, each end node, shown in Figure 4, is connected

to a moisture sensor (to take soil moisture level) and a NRF24l01 transceiver (to send data to the

main microcontroller).

5

 Figure 4: End node microcontroller connections.

First, a program was written to ensure a proper moisture level reading from the end node moisture

sensor. The output of the program is shown in Figure 5.

Figure 5: Testing of soil moisture sensor.

• Main Microcontroller

As previously stated, the main microcontroller is the link between the mobile application, irrigation

system, and end nodes. Thus, the main microcontroller (Figure 6) is connected to the mobile

application using firebase server (to send and receive data), to the relay, pumps, and sprinklers (to

irrigate the plants based on user’s input), and NRF24L01 transceiver (to receive soil moisture

sensor reading from the end node microcontrollers).

6

Figure 6: Main microcontroller connections.

To test the data transfer between the end node microcontroller and the main microcontroller, an

arduino code was developed. The main aim of this arduino code was to ensure that the main

microcontroller is successfully receiving the soil moisture readings from the end node

microcontroller. The result of this code is shown in Figure 7.

Figure 7: Main microcontroller receiving soil moisture level from zone.

After confirming that the wireless connection between the main microcontroller and zone 1 end

node, the code was applied for the three other end nodes. The communication between the main

microcontroller and the four end nodes was successful, as the main microcontroller was able to

receive the soil moisture level for the four end nodes (Figure 8).

7

Figure 8: Main microcontroller receiving soil moisture levels from four zones.

Then, the arduino code was developed to activate the pump and irrigate the plants based on the

soil moisture levels reading and the user input from the mobile application. Since the user is able

to choose the irrigation mode (automatic or manual) and to choose the plant type (to set minimum

and maximum moisture level threshold).

• Mobile Application

The mobile application was developed using xCode, an integrated development environment for

IOS applications. The purpose of the mobile application is to give the user the ability to control

and monitor the irrigation system. The friendliness and ease of the mobile application was

considered while developing the mobile application for our targeted audience. The following

Figure 9 shows the launching screen of our application. The launching screen shows our logo for

a few seconds and then automatically moves to the main screen. The main screen of the mobile

application shows several options (Figure 10). The options are: control the irrigation system, fault

detection, check the soil moisture levels in different zones, and learn about QATra.

Figure 9: Launching screen. Figure 10: Main screen.

8

Control irrigation system page (Figure 11) will give the user the choice to choose the irrigation

mode and the plant type for each of the four zones. While the fault detection page (Figure 12),

informs the user of the possible faults in the system. The moisture level page (Figure 13) is capable

to view the soil moisture level for the four zones. Finally, the last page (Figure 14) shows a small

paragraph about QATra Irrigation System.

 Figure 11: Control the irrigation system page. Figure 12: Fault detection page.

Figure 13: Soil moisture level page. Figure 14: About QATra page.

9

The mobile application is ready to be deployed, as it was successfully tested on a real iPhone. Also,

it is connected to the firebase server, which will allow the communication between the mobile

application and the main microcontroller.

• Functional Prototype

Figure 15 shows the functional prototype of the smart irrigation system. The system consists of

many parts that includes microcontrollers, water pumps, relay switches, sprinklers, moisture

sensors, transceivers, batteries and a mobile application. As shown in Figure 16, the system has

two main inputs which are the soil moisture sensor readings and the type of plant the user is

inputting to each end zone. The main function of the system is that it takes the soil moisture

readings for each zone and checks if the soil water content is below the minimum threshold or

above a maximum threshold. Whenever it is at or under a minimum threshold it automatically

pumps water to irrigate the plants in order to prevent it from falling below this minimum threshold

and it stops the irrigation if it reaches the maximum threshold. What makes the system more

sophisticated is that the user, through the mobile application, can turn the system on or off and can

monitor the soil moisture level for each zone. Moreover, if the system detects a potential fault, it

informs the user by sending a notification to the mobile application.

Figure 15: Functional prototype of QATra irrigation system.

Figure 16: System high level representation.

10

• Troubleshooting

During our process of building our system, we faced some problems. However, these problems

were solved.

• Transceiver NRF24L01

After connecting NRF24L01 transceivers to two Arduinos (microcontrollers), we tried to send

strings as a starting point to check whether the connection was secured. Strings were received at

the receiver node Arduino. However, when we connected the soil moisture level sensor to the

transmitter node Arduino and tried sending integers, the receiver node Arduino was receiving

either zeros or question marks. We overcame that problem by changing the type of the parameters

that are transmitted and received by the NRF24L01 transceiver to integers and unsigned characters.

• Raspberry pi (Gateway)

In our proposed design, the gateway was the link between the main microcontroller (central node)

and the server. During the programming and testing stage of the Raspberry Pi with Arduino,

NRF24L01 transceivers were used to send and receive data. However, 255 was being received all

of the time no matter what we sent. We decided to eliminate the Raspberry pi from our system and

make the central node Arduino as the link between the system and the server.

• The wifi connection of Central node Arduino after eliminating the Raspberry pi

(Gateway)

The Arduino is a microcontroller, unlike the Raspberry pi which is a computer that can enable Wi-

fi easily. After researching, we found a Wi-fi micro-chip that can be used to connect the Arduino

to the internet. This chip is ESP8266. We talked to Mr. Wesam regarding this and he ordered the

Wi-fi micro-chip for us. When we received the ESP8266, we started programming it but kept

getting errors. Mr. Wesam provided another type of Arduino called Arduino Uno Wifi Rev 2. The

Wi-fi connection worked because the new Arduino has a Wifi library that can be used. We scanned

the networks nearby then connected to the Wifi successfully by providing the network name and

password in the code.

Our Progress Relative to the Timeline

Until March 9th, our project was on track. The code of the main microcontroller was finalized, and

the fault detection algorithm was established. However, due to COVID-19 circumstances, the

university closed its doors. Thus, one of our members (Fatima) took the equipment to her house.

Our group agreed on splitting the code between us, writing the code, and sending the code to

Fatima to test it. Also, the current situation makes it hard for the team to fully merge the different

parts of the system together (i.e connecting the sprinkles, 4 zones and the mobile application

together) and so we are still negotiating a way to get it done before the demo day. We are slightly

behind our timeline. According to the timeline, by this time we should be finished with the system

and started with testing the system as a whole. Also, the change that happened with regards to the

11

demo day made us change our plan to what will be presented and how it will be presented in the

showcase. The fact that the project needs to be videotaped and submitted a day before the 21st of

April, made us modify our time plan to accommodate those changes. We are slightly behind.

Nevertheless, we are able to catch up and deliver the prototype on April 21st.

Conclusion

The next steps that need to be taken for assembling the project and accomplishing its functions

are: implementing the fault detection algorithm in the main microcontroller code, securing the

connection between the different parts of the system, and resuming the testing to ensure reliable

operation of the system. Testing the system will be till the demo day. On the demo day, we plan

to present a video that shows 4 zones/end nodes (4 different plants) working with the system. We

will remove the moisture sensor from the plant of one of the end nodes, so that the system will

detect a fault and show it on the app. We will show how one end node can be turned off and

controlled manually. For the last two end nodes, one of the plants’ moisture level will be above

the maximum threshold (to show how the system works automatically) and the other plants’

moisture level will be under the minimum threshold to show how the sprinkler will be turned on.

For verification, it is important to note that separate parts of the system were verified instead of

the system as a whole. First, the mobile application was tested on the virtual device, which showed

us the layout of the application, whether the transitions between the pages were working, and the

application as a whole was running. Later, the mobile application was installed on an iPhone, and

we verified that it can be deployed. Second, the moisture sensor manual said that the moisture

sensor level is less than 300 for dry soil and between 300 and 700 for moist soil. Therefore, we

tested the moisture sensor with different types of soil and measured the soil moisture level to verify

whether the moisture sensors were working properly or not.

For improvements, we believe that the system can be cheaper. Now, the system costs 520 dollars.

This price includes the irrigation system (pumps, relays, sprinklers and pipes) as well as the

controller part. Therefore, it is more expensive than other smart irrigation systems, since they

include the controllers only. If the system was to be fabricated all at once, instead of buying the

different components in our system from different companies (i.e. if we manufactured those

components) and the system was mass produced, then the system will be cheaper. We realized that

the price can be a financial constraint, and therefore we believe an improvement to it is necessary.

Moreover, we believe that the fault detection method can be optimized. Since currently it can only

notify the user in case of a potential fault, without specifying where the exact fault is. The reason

for that is because fault detection is a whole field on its own, and we decided that we will partially

implement it in our system. For future, we or other groups that wish to improve our project can

enhance the fault detection algorithm.

For future recommendations, either if we continue developing this project or other people continue

with it, we believe there are additional features that can be added. Those features are weather

intelligence and multi-language. Our project is specifically designed for Qatar. Since rain is very

rare in Qatar, we believed that a weather sensor is not necessary. However, if the app was to be

developed for different countries, a weather sensor can enhance the performance of the system.

Also, the app can be linked to a weather forecast, in order to plan irrigation schedules accordingly.

12

Moreover, the language used in our mobile application is English, since it is the most widely

spoken language around the world. Other languages can be implemented like Arabic, Urdu, etc. to

make the system more accessible and universal.

Qatar National Vision 2030 aims to achieve sustainable development to ensure a better life for

future generations. QATra hopes to contribute to this vision.

13

References:

[1] H. M. Baalousha and O. K. M. Ouda, “Domestic water demand challenges in Qatar,” Arabian

Journal of Geosciences, vol. 10, no. 24, Dec. 2017.
[2] M. Darwish and R. Mohtar, “Qatar water challenges,” Desalination and Water Treatment, vol.

51, no. 1-3, Jun. 2012.

14

Appendix:

• End Node Code

15

• Main Microcontroller Code

16

• Mobile Application Code

- Control Irrigation System Code

- //

- // ViewController.swift

- // QATra Irrigation System

- //

- // Created by Fatima Al-Janahi on 2/6/20.

- // Copyright © 2020 Fatima Al-Janahi. All rights reserved.

- //

-

- import UIKit

-

- class ViewController: UIViewController, UIPickerViewDelegate, UIPickerViewDataSource {

- //**

- //*************Zone 1***

-

- @IBOutlet weak var pickerView1: UIPickerView!

- @IBOutlet weak var control1: UISegmentedControl!

- @IBOutlet weak var switch1: UISwitch!

-

- override func viewDidLoad() {

- super.viewDidLoad()

- pickerView1.dataSource = self

- pickerView1.delegate = self

- pickerView2.dataSource = self

- pickerView2.delegate = self

- pickerView3.dataSource = self

- pickerView3.delegate = self

- pickerView4.dataSource = self

- pickerView4.delegate = self

-

- let chosen1 = UserDefaults.standard.integer(forKey: "chosen1")

- let chosen2 = UserDefaults.standard.integer(forKey: "chosen2")

- let chosen3 = UserDefaults.standard.integer(forKey: "chosen3")

- let chosen4 = UserDefaults.standard.integer(forKey: "chosen4")

- pickerView1.selectRow(chosen1, inComponent: 0, animated: false)

- pickerView2.selectRow(chosen2, inComponent: 0, animated: false)

- pickerView3.selectRow(chosen3, inComponent: 0, animated: false)

- pickerView4.selectRow(chosen4, inComponent: 0, animated: false)

-

17

-

- let zone1 = UserDefaults.standard.integer(forKey: "zone1")

- let zone1On = UserDefaults.standard.integer(forKey: "zone1On")

- if zone1 == 0

- {

- control1.selectedSegmentIndex = 1

- switch1.isHidden = true

- }

- else

- {

- control1.selectedSegmentIndex = 0

- switch1.isHidden = false

- }

-

- if zone1On == 0

- {

- switch1.isOn = false

- }

- else

- {

- switch1.isOn = true

- }

-

- let zone2 = UserDefaults.standard.integer(forKey: "zone2")

- let zone2On = UserDefaults.standard.integer(forKey: "zone2On")

- if zone2 == 0

- {

- control2.selectedSegmentIndex = 1

- switch2.isHidden = true

- }

- else

- {

- control2.selectedSegmentIndex = 0

- switch2.isHidden = false

- }

-

- if zone2On == 0

- {

- switch2.isOn = false

- }

- else

18

- {

- switch2.isOn = true

- }

-

- let zone3 = UserDefaults.standard.integer(forKey: "zone3")

- let zone3On = UserDefaults.standard.integer(forKey: "zone3On")

- if zone3 == 0

- {

- control3.selectedSegmentIndex = 1

- switch3.isHidden = true

- }

- else

- {

- control3.selectedSegmentIndex = 0

- switch3.isHidden = false

- }

-

- if zone3On == 0

- {

- switch3.isOn = false

- }

- else

- {

- switch3.isOn = true

- }

-

- let zone4 = UserDefaults.standard.integer(forKey: "zone4")

- let zone4On = UserDefaults.standard.integer(forKey: "zone4On")

- if zone4 == 0

- {

- control4.selectedSegmentIndex = 1

- switch4.isHidden = true

- }

- else

- {

- control4.selectedSegmentIndex = 0

- switch4.isHidden = false

- }

-

- if zone4On == 0

- {

19

- switch4.isOn = false

- }

- else

- {

- switch4.isOn = true

- }

- }

-

-

- @IBAction func index1(_ sender: UISegmentedControl) {

- switch control1.selectedSegmentIndex

- {

- case 0:

- UserDefaults.standard.set(1, forKey: "zone1")

- switch1.isHidden = false

- print("zone 1 manual")

- case 1:

- UserDefaults.standard.set(0, forKey: "zone1")

- switch1.isHidden = true

- print("zone 1 automatic")

- default:

- UserDefaults.standard.set(1, forKey: "zone1")

- switch1.isHidden = false

- print("zone 1 manual")

- }

-

- }

-

- @IBAction func switch1control(_ sender: UISwitch) {

- if switch1.isOn

- {

- UserDefaults.standard.set(1, forKey: "zone1On")

- print("zone 1 manual on")

- }

- else

- {

- UserDefaults.standard.set(0, forKey: "zone1On")

- print("zone 1 manual off")

- }

- }

-

20

-

- let veg = ["Mint",

- "Basil",

- "Cucumber",

- "Tomato"]

-

- //***

- //*********ZONE 2*******************

-

- @IBOutlet weak var pickerView2: UIPickerView!

- @IBOutlet weak var control2: UISegmentedControl!

- @IBOutlet weak var switch2: UISwitch!

-

- @IBAction func index2(_ sender: UISegmentedControl) {

- switch control2.selectedSegmentIndex

- {

- case 0:

- UserDefaults.standard.set(1, forKey: "zone2")

- switch2.isHidden = false

- print("zone 2 manual")

- case 1:

- UserDefaults.standard.set(0, forKey: "zone2")

- switch2.isHidden = true

- print("zone 2 automatic")

- default:

- UserDefaults.standard.set(1, forKey: "zone2")

- switch2.isHidden = false

- print("zone 2 manual")

- }

- }

-

- @IBAction func switch2control(_ sender: UISwitch) {

-

- if switch2.isOn

- {

- UserDefaults.standard.set(1, forKey: "zone2On")

- print("zone 2 manual on")

- }

- else

- {

- UserDefaults.standard.set(0, forKey: "zone2On")

21

- print("zone 2 manual off")

- }

- }

-

- //**********************************

- //*********ZONE 3*******************

- @IBOutlet weak var pickerView3: UIPickerView!

- @IBOutlet weak var control3: UISegmentedControl!

- @IBOutlet weak var switch3: UISwitch!

-

- @IBAction func index3(_ sender: UISegmentedControl) {

- switch control3.selectedSegmentIndex

- {

- case 0:

- UserDefaults.standard.set(1, forKey: "zone3")

- switch3.isHidden = false

- print("zone 3 manual")

- case 1:

- UserDefaults.standard.set(0, forKey: "zone3")

- switch3.isHidden = true

- print("zone 3 automatic")

- default:

- UserDefaults.standard.set(1, forKey: "zone3")

- switch3.isHidden = false

- print("zone 3 manual")

- }

- }

-

-

- @IBAction func switch3control(_ sender: UISwitch) {

- if switch3.isOn

- {

- UserDefaults.standard.set(1, forKey: "zone3On")

- print("zone 3 manual on")

- }

- else

- {

- UserDefaults.standard.set(0, forKey: "zone3On")

- print("zone 3 manual off")

- }

- }

22

- //**********************************

- //***************ZONE 4*************

-

- @IBOutlet weak var pickerView4: UIPickerView!

- @IBOutlet weak var control4: UISegmentedControl!

- @IBOutlet weak var switch4: UISwitch!

-

- @IBAction func index4(_ sender: UISegmentedControl) {

- switch control4.selectedSegmentIndex

- {

- case 0:

- UserDefaults.standard.set(1, forKey: "zone4")

- switch4.isHidden = false

- print("zone 4 manual")

- case 1:

- UserDefaults.standard.set(0, forKey: "zone4")

- switch4.isHidden = true

- print("zone 4 automatic")

- default:

- UserDefaults.standard.set(1, forKey: "zone4")

- switch4.isHidden = false

- print("zone 4 manual")

- }

-

- }

-

- @IBAction func switch4control(_ sender: UISwitch) {

-

- if switch4.isOn

- {

- UserDefaults.standard.set(1, forKey: "zone4On")

- print("zone 4 manual on")

- }

- else

- {

- UserDefaults.standard.set(0, forKey: "zone4On")

- print("zone 4 manual off")

- }

- }

-

- func numberOfComponents(in pickerView: UIPickerView) -> Int {

23

- return 1

- }

-

- func pickerView(_ pickerView: UIPickerView, numberOfRowsInComponent component: Int) -> Int {

- return veg.count

- }

-

- func pickerView(_ pickerView: UIPickerView, titleForRow row: Int, forComponent component: Int) -> String? {

- return veg[row]

- }

-

- func pickerView(_ pickerView: UIPickerView, didSelectRow row: Int, inComponent component: Int) {

- let Veg1 = veg[pickerView1.selectedRow(inComponent: 0)]

- let Veg2 = veg[pickerView2.selectedRow(inComponent: 0)]

- let Veg3 = veg[pickerView3.selectedRow(inComponent: 0)]

- let Veg4 = veg[pickerView4.selectedRow(inComponent: 0)]

- UserDefaults.standard.set(pickerView1.selectedRow(inComponent: 0), forKey: "chosen1")

- UserDefaults.standard.set(pickerView2.selectedRow(inComponent: 0), forKey: "chosen2")

- UserDefaults.standard.set(pickerView3.selectedRow(inComponent: 0), forKey: "chosen3")

- UserDefaults.standard.set(pickerView4.selectedRow(inComponent: 0), forKey: "chosen4")

- print(Veg1)

- print(Veg2)

- print(Veg3)

- print(Veg4)

- }

-

- }

- Fault Detection Code:

24

- //

- // FaultDetectionViewController.swift

- // QATra Irrigation System

- //

- // Created by Fatima Al-Janahi on 2/20/20.

- // Copyright © 2020 Fatima Al-Janahi. All rights reserved.

- //

-

- import UIKit

-

- class FaultDetectionViewController: UIViewController {

-

- @IBOutlet weak var green1: UIImageView!

- @IBOutlet weak var green2: UIImageView!

- @IBOutlet weak var green3: UIImageView!

- @IBOutlet weak var green4: UIImageView!

- @IBOutlet weak var red1: UIImageView!

- @IBOutlet weak var red2: UIImageView!

- @IBOutlet weak var red3: UIImageView!

- @IBOutlet weak var red4: UIImageView!

-

- override func viewDidLoad() {

- super.viewDidLoad()

- UserDefaults.standard.integer(forKey: "fault1")

- UserDefaults.standard.integer(forKey: "fault2")

- UserDefaults.standard.integer(forKey: "fault3")

- UserDefaults.standard.integer(forKey: "fault4")

-

- if fault1 == 0

- {

- green1.isHidden = false

- red1.isHidden = true

- }

- else

- {

- green1.isHidden = true

- red1.isHidden = false

- }

-

- if fault2 == 0

25

- {

- green2.isHidden = false

- red2.isHidden = true

- }

- else

- {

- green2.isHidden = true

- red2.isHidden = false

- }

-

- if fault3 == 0

- {

- green3.isHidden = false

- red3.isHidden = true

- }

- else

- {

- green3.isHidden = true

- red3.isHidden = false

- }

-

- if fault4 == 0

- {

- green4.isHidden = false

- red4.isHidden = true

- }

- else

- {

- green4.isHidden = true

- red4.isHidden = false

- }

- }

-

- let fault1 = UserDefaults.standard.integer(forKey: "fault1")

- let fault2 = UserDefaults.standard.integer(forKey: "fault2")

- let fault3 = UserDefaults.standard.integer(forKey: "fault3")

- let fault4 = UserDefaults.standard.integer(forKey: "fault4")

-

-

- }

26

- Moisture Level Code

- //

- // MoistViewController.swift

- // QATra Irrigation System

- //

- // Created by Fatima Al-Janahi on 2/20/20.

- // Copyright © 2020 Fatima Al-Janahi. All rights reserved.

- //

-

- import UIKit

-

- class MoistViewController: UIViewController {

-

- override func viewDidLoad() {

- super.viewDidLoad()

- UserDefaults.standard.integer(forKey: "Moist1")

- UserDefaults.standard.integer(forKey: "Moist2")

- UserDefaults.standard.integer(forKey: "Moist3")

- UserDefaults.standard.integer(forKey: "Moist4")

-

- }

-

- let Moist1 = UserDefaults.standard.integer(forKey: "Moist1")

- let Moist2 = UserDefaults.standard.integer(forKey: "Moist2")

- let Moist3 = UserDefaults.standard.integer(forKey: "Moist3")

- let Moist4 = UserDefaults.standard.integer(forKey: "Moist4")

- }

27

